US009390129B2

a2 United States Patent

Li et al.

US 9,390,129 B2
Jul. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

(56)

5,499,368 A
6,389,410 B1 *
6,622,138 B1*

SCALABLE AND ADAPTIVE EVALUATION
OF REPORTING WINDOW FUNCTIONS

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: Huagang Li, San Jose, CA (US);
Srikanth Bellamkonda, Mountain View,
CA (US); Sankar Subramanian,
Cupertino, CA (US); Andrew
Witkowski, Foster City, CA (US)

Assignee: QOracle International Corporation,
Redwood Shores, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 273 days.

Appl. No.: 13/754,687

Filed: Jan. 30, 2013

Prior Publication Data

US 2014/0214754 A1l Jul. 31, 2014

Int. CL.

GO6F 7/00 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 17/30433 (2013.01); GOGF 17/30442
(2013.01); GOGF 17/30471 (2013.01)
Field of Classification Search
CPC ..o GOG6F 17/30471; GOGF 17/30486;
GOGF 17/30442; GOGF 17/30463
USPC 707/602, 718, 769
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
3/1996 Tate et al.

5/2002 Gupta
9/2003 Bellamkonda et al.

Database Query 198
(e.g., expression (1))

l

Query Execution
Plan Generator 115

Query Optimizer 126

6,978,458 B1* 12/2005 Ghoshetal. 718/100
2005/0187958 Al 82005 Wong
2006/0190947 Al* 82006 Ghoshetal. 719/313
2009/0063527 Al* 3/2009 Corvinelli et al. .. 707/101
2014/0214799 Al* 7/2014 Lietalcccoiinnn. 707/718
OTHER PUBLICATIONS

Bellamkonda et al., Enhanced Subquery Optimizations in Oracle,
VLDB 09, Aug. 24-28, 2009, Lyon France, pp. 1366-1377.*
Bellamkonda et al., Adaptive and Big Data Scale Parallel Execution
in Oracle, The 39 International Conference on Very Large Data
Bases, Aug. 26-30, 2013, Riva del Garda, Trento, Italy, pp. 1102-
1113.*

U.S. Appl. No. 13/754,740, filed Jan. 30, 2013, Office Action.

* cited by examiner

Primary Examiner — Cheyne D Ly
(74) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP; Marcel K. Bingham

(57) ABSTRACT

According to one aspect of the invention, for a database
statement that specifies evaluating reporting window func-
tions, a computation-pushdown execution strategy may be
used for the database statement. The computation-pushdown
execution plan includes producer operators and consolidation
operators. Each producer operator computes a respective par-
tial aggregation for each reporting window function based on
a subset of rows, and broadcasts the respective partial aggre-
gation. Each consolidation operator fully aggregates all par-
tial aggregations broadcasted from the producer operators.
Alternatively, an extended-data-distribution-key execution
plan may be used. Each producer operator sends rows based
on hash keys to sort operators for computing partial aggrega-
tions for at least one reporting window function based on a
subset of rows. Each consolidation operator receives and fully
aggregates all partial aggregations broadcasted from the sort
operators.

20 Claims, 7 Drawing Sheets

DATABASE STORAGE
SUBSYSTEM 150

DATABASE STORAGE
SUBSYSTEM 151

Common-Prefix
Execution Plan 128-A

Window Sort 204

TSC 202

Extended-data-
distribution-key
Execution Plan 128-B
Window
Consolidation 206

Computation-pushdown
Execution Plan 128-C

Window
Consolidation 206

Window Sort 204

III

TSC 202

TSC and Window Sort
208

U.S. Patent

Jul. 12, 2016

FiG. 1A

Sheet 1 of 7

¥

US 9,390,129 B2

100

DATABASE STORAGE
SERVER 160A

DATABASE BERVER 1104

PROCE SSOR 162 FROCESSOR 112
T AT
THREAD THREAD READ T’f?gg”
1644 1645 1147
MEMORY 170 MEMORY 140
MERCRY MEMCRY Mgg?f{ T“Z;’ fgﬁi‘{
BLOCK BLOCK e e
1748 1748 J24h
t EXECUTION PLAN 125
LOCAL STORAGE 180 :
SWAP FILE 182 LOCAL STORAGE £30

SWAP FILE 132

RATABASE SERVER

4 nq{g

\ THREAD 17140

| THREAD 114D

DATABASE GLENT 180

_...4-«"’""'"'

DA TABA SE STORAGE

PROCESSOR 192
CLENT APPLICATION 154 ‘

SUBSYSTEM 150

DATARASE TABLE 153

MEICIRY 196
| DATABASE QUERY 368 |

US 9,390,129 B2

Sheet 2 of 7

Jul. 12, 2016

U.S. Patent

20Z OS1

80¢

10S MOPUIA\ PUB IS 70C HOS MOpUIM

907 UONEPIOSUO) 90¢ uonepljosuo)

AMOPUIA MOPUIM
9-8¢T ue|d uoI1IndaX3
J-8CT uk|d uonNJIaxy Ady-uonnguasip
umopysnd-uoneindwo) -ejep-pspuaixy

20C OSL

70T H0S MOPUIM

V-8¢T ue|d uonndioax3
Xl}ald-uowwo)

) /

\I\I‘)
TST INFLSASENS
19VYOLS ISVYavIvda

0ST WILSASENS
19VYOLS ISvavivd

9zT J19ziwndo AsanpD

GIT JO3RIBUID ue|d
uonndaxi Aisnp

\\\u\‘|}

/{l\u\\\

a1 Ol4

((1) uoissaidxa “8-9)
86T AJanD oseqereq

US 9,390,129 B2

Sheet 3 of 7

Jul. 12, 2016

U.S. Patent

V¢ Old
t-¢0¢ €-c0¢ ¢-coc T-c0¢
(4eah)yseH
v-¥0¢C €-v0¢ ¢-0¢ T-v0¢

US 9,390,129 B2

Sheet 4 of 7

Jul. 12, 2016

U.S. Patent

d¢ Ol

¥-¢0¢ €-¢0¢ ¢-¢0¢ 1-¢0¢

uonduUN} uonNQISIA
V10T v0C 1-v0¢

SMOJ 91NQLIISIPAJ AjWOpUE) puas ev0c
suoleda.38e |enjued jseapeouq

uon
-ep1|osuo)
MOPUI

uon
-ep1josuo)
MOPUI

uon
-epIjosuo)
MOPUIM

uon
-epIjosuo)
MOPUIM

7-90¢ €-90¢ Z-90¢ 1-90¢

US 9,390,129 B2

Sheet S of 7

Jul. 12, 2016

U.S. Patent

JC 'Ol

¥7-80¢ €-80¢

IS1 + HOS
MOPUIM

IS1 + HOS
MOPUIM

SMOJ 31nqusIpaJ Ajwopueld puss
suoljeda.u33e |enued jsedpeolg

uon- uon-
epIjosuo) epIjosuo)
MOPUIM

MOPUIM

¥7-90¢ €-90¢

¢-80¢

IS1 + HOS
MOPUIM

uon-
epIjosuo)

MOPUIM

1-80¢

IS1 + HOS
MOPUIM

uon-
epIjosuo)
MOPUIM

¢-90¢

1-90¢

US 9,390,129 B2

Sheet 6 of 7

Jul. 12, 2016

U.S. Patent

ac Sl

¥7-80¢ €-80¢ ¢-80¢

IS1 + HOS
MOPUIM

JS1 +10S
MOPUIAN

IS1 + HOS
MOPUIM

suoljedau33e |eijued Aue jseapeoug

(yuow 4Ysypenb YeaA)yseH Jo
(4934eNb “E3A)YyseH 40 (sesA)yseH

uon-
epIjosuo)
MOPUIM

uon- uon-
epIjosuo) epIjosuo)

MOPUIM MOPUIA

¥7-90¢ €-90¢ ¢-90¢

1-80¢

IS1 + HOS
MOPUIM

uon-
epIjosuo)
MOPUIM

1-90¢

US 9,390,129 B2

Sheet 7 of 7

Jul. 12, 2016

U.S. Patent

1SOH

aze

8cc

1€
V 104INOD

d0sdno

|

_ 008 —

cee N e o

MHOMLAN TNETH FOVAHILNI v0E

W00 , NOILYOINNWIWOD H0SS300d
|
|
|
|
|
| -
, 708
, sng
|
|
|

LINg3LINI |
|
! e 30¢ 0T

p— | 30IA3d AHOWI W
|
JOVHOLS
H3AAH3S | WOy NIV

v §259
30IA3a 1NdNI

L
AY1dSId

E

US 9,390,129 B2

1

SCALABLE AND ADAPTIVE EVALUATION
OF REPORTING WINDOW FUNCTIONS

TECHNICAL FIELD

The present invention relates to relational database man-
agement systems and, more specifically, to techniques for
evaluating reporting window functions in a relational data-
base management system.

BACKGROUND

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

Window functions have been very popular in the user com-
munity and become an integral part of data warehouse que-
ries. A class of window functions commonly used in data
warehousing is reporting window functions. Database state-
ments in data warehouse environments may involve multiple
such reporting window functions at successive hierarchical
levels.

Window functions such as reporting window functions are
often used as foundational analysis tools for data sets. For
example, one or more such window functions may be used to
extract information on sales data stored in a database system.
This information can be utilized by a company to track sales,
evaluate policy, develop marketing strategy, project future
growth, and perform various other tasks.

Records from one or more database tables can be grouped
according to one or more partition-by keys. Reporting win-
dow functions can be calculated based on records in each
group. The desired grouping can be specified in a database
query, such as a SQL query.

Given the importance of window functions for data analy-
sis, providing a quick result for database queries containing
window functions is often an important database perfor-
mance metric. To answer such a database query in an accel-
erated fashion, the database query can be formulated as par-
allel operations when creating a query execution plan for
execution by database software in a hardware configuration.

Based on the foregoing, there is a need for developing
techniques that can evaluate window functions in a highly
efficient and scalable fashion.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1A is a block diagram that depicts an exemplary
database system;

FIG. 1B is a block diagram that depicts the generation of
exemplary query execution plans using a query optimizer;

FIG.2A,FIG. 2B and FIG. 2C illustrate example execution
plans;

FIG. 2D illustrates adaptively switching execution strate-
gies of a database statement; and

FIG. 3 is ablock diagram illustrating a computer system on
which embodiments of the invention may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in orderto provide

10

15

20

25

30

35

40

45

50

55

60

65

2

a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

Definitions

A “computing node”, as the term is used herein, refers to a
set of one or more processes (under control of an operating
system) and a portion of memory and/or other computer
resources, that are allocated for performance of one or more
functionalities pursuant execution of software by said one or
more processes. A computing node is also referred to herein
as anode. A node includes a “server” or “server instance” that
is configured to respond to requests from various clients and
applications for one or more services and/or functionalities.

Examples of nodes include without limitation database
servers that manage data in one or more databases, storage
devices that store data persistently for database servers, mul-
timedia server instances that manage various types of multi-
media such as images, audio/video streams, and other
streamed multimedia content, internet server instances that
cache content that is persistently stored elsewhere, applica-
tion server instances and other types of middleware server
instances that cache data to service particular types of clients
and applications, and any other types of instances that are
configured to process persistently stored data by buffering it
into a volatile memory cache.

An “execution plan” or “query execution plan”, as the term
is used herein, refers to a set of steps that are generated by a
database system to execute a database query. Several candi-
date execution plans may be generated for a particular query,
and a candidate execution plan estimated to be most efficient
may be selected as the actual execution plan. The selection of
an optimal candidate execution plan is beyond the scope of
the present application and the selection of an efficient can-
didate execution plan will be assumed.

An execution plans may be represented by a tree (or a
graph) of interlinked nodes, referred to herein as “operators”,
each of which corresponds to a step of the execution plan,
referred to herein as an execution plan operation. The hierar-
chy of the tree represents the order in which the execution
plan operations are performed and how data flows between
each of the execution plan operations. Execution plan opera-
tions include, for example, an aggregation, a sort, a table scan,
an index scan, hash-join, sort-merge join, nested-loop join,
and filter.

A “record source”, as the term is used herein, refers to an
operator that produces a set of records when executed, for
example by scanning the rows of a database table, or by
performing an operation, such as a table join, on one or more
inputs to create a new set of intermediate records. When a
record source is defined for a particular operator, such as for
an aggregation operator, a sort operator, etc., then the record
source is defined as an input for that particular operator.

When data is stored in a relational database system, appli-
cations access the data by submitting commands that conform
to the database language supported by the relational database
system, the most common of which is the Structured Query
Language (SQL).

Relational database systems store data in the form of
related tables, where each table has one or more columns and
zero or more rows. A relational database management system
may organize data in the tables in disk blocks on disk. A “disk
block” is a logical unit of data storage used by a relational

US 9,390,129 B2

3

database management system for storing database data. A
disk block has a block size (e.g., 4 KB) and may encompass
one or more underlying file system or operating system
blocks. Among other information, a disk block may include
the data of one or more rows of a table or tables, or the data of
a row may span multiple disk blocks.

General Overview

Techniques are provided that address the problems associ-
ated with prior approaches for evaluating reporting window
functions in a relational database management system. These
techniques overcome the limitations of traditional/simple
parallelization models that fail to fully leverage the process-
ing power of a relational database management system. Par-
allelization models for evaluating reporting window func-
tions as described herein include multiple stages each of
which may adapt its computation based on data characteris-
tics, thereby providing high scalability and efficient execu-
tion. A database system that implements techniques as
described herein provides better scalability of reporting win-
dow function computation, in keeping with the fast growing
pace of modern hardware and massively scalable systems.

Existing parallel execution schemes for evaluating report-
ing window functions do not scale well. These schemes do not
fully leverage system’s parallel processing resources. For
example, each reporting window function may be evaluated
based on an individual data distribution comprising partition-
by keys (or columns) of that reporting window function. This
approach generates significant computation overheads such
as sorting and significant data traffic between parallel execut-
ing processes, when there are multiple reporting window
functions to be evaluated. Furthermore, some of the multiple
window functions may not have sufficient numbers of distinct
values for distributing data to available parallel executing
processes. Accordingly, the number of parallel executing pro-
cesses that can receive their respective data is low. Alterna-
tively, a data distribution key may be selected based on a
common prefix among multiple sequences of partition-by
keys respectively specified for the reporting window func-
tions. This approach may avoid computation overheads and
data traffic problems in other approaches. However, when the
number of distinct values of the common prefix is low, the
number of parallel executing processes that can receive their
respective data is also low.

Scalable computation algorithms under techniques as
described herein may be used to overcome this scalability
issue. In a first phase of the algorithms, input rows are dis-
tributed using an extended data-distribution key or a compu-
tation-pushdown strategy, instead of using a common prefix
among sequences of partition-by keys respectively specified
for the reporting window functions. This data distribution
strategy is effective in that it can scale up to many parallel
processing entities such as parallel executing processes with-
out being limited to the number of distinct value of the com-
mon prefix. Aggregations, some or all of which may be par-
tial, of data values in the reporting window functions may be
performed in the first phase in parallel by a set of processes.
As used herein, the term “process” may refer to any process-
ing entity including an operating process, a thread, a light
weight process, a database server, an operator that performs
one or more database related operations, etc.

In a second phase of the algorithms, partial aggregations
among the aggregations performed in the first phase are
broadcasted to a second set of parallel executing processes.
These partial aggregations are then consolidated into full
aggregations for all reporting window functions that are only
partially aggregated in the first phase.

At runtime, the actual numbers of distinct values of all
combinations of partition-by keys specified for the reporting

5

10

15

20

25

30

35

40

45

50

55

60

65

4

window functions may be monitored by producer operators.
Each producer notifies a query coordinator that a specific
combination of partition-by keys or none of the combinations
has a sufficient number of distinct values as well as the small-
est number of columns.

The query coordinator collects all the notifications from all
the producers and selects a global combination among spe-
cific combinations respectively received from the producer
based on one or more selection factors. The query coordinator
notifies parallel processing entities which execution strategy
is to be used. If a common prefix execution strategy or an
extended key execution strategy is selected, the query coor-
dinator also notifies the parallel processing entities of the
global combination of partition-by keys as a new data distri-
bution key for data distribution. Accordingly, the parallel
processing entities collectively and adaptively switch to the
selected execution strategy, which may be different from the
one in the execution plan generated before runtime.

System Overview

FIG. 1A is a block diagram that depicts an exemplary
database system, according to an embodiment. Database sys-
tem 100 of FIG. 1A includes database server 110A, database
server 110B, network 140, database storage subsystem 150,
database storage server 160A, database storage server 1608,
and database client 190. Database server 110A includes pro-
cessor 112, memory 120, and local storage 130. Processor
112 includes threads 114A and 114B. Memory 120 includes
memory block 124A, memory block 124B, and execution
plan 128. Local storage 130 includes swap file 132. Database
server 110B includes thread 114C and thread 114D. Database
storage subsystem 150 includes database table 152. Database
storage server 160A includes processor 162, memory 170,
and local storage 180. Processor 162 includes thread 164A
and thread 164B. Memory 170 includes memory block 174A
and memory block 174B. Local storage 180 includes swap
file 182. Database storage server 160B includes thread 164C
and thread 164D.

Database servers 110A-110B and database storage servers
160A-160B are multi-node systems, each comprising any
multiple number of nodes. Threads 114A-114B may be
referred to as consumers, whereas threads 164A-164B may
bereferred to as producers. Multiple threads or processes may
be assigned to the same operator, which may also execute in
parallel on multiple computing devices. Embodiments of the
present invention are illustrated using multi-node systems;
however an embodiment of the present invention is not so
limited.

While only a single database client 190 is shown, embodi-
ments of database system 100 may support multiple database
clients concurrently. Additionally, while only a single data-
base table 152 is shown in database storage subsystem 150,
embodiments may also include multiple database tables, and
database query 198 may address multiple database tables in a
single query. Embodiments of database system 100 may also
include any desired quantity of database servers, database
storage servers, and database storage subsystems. For sim-
plicity, database server 110B and database storage server
160B are shown in abbreviated form in FIG. 1A. However,
database server 110B may contain elements similar to those
shown in database server 110A, and database storage server
160B may contain elements similar to those shown in data-
base storage server 160A.

Client application 194 executing on processor 192 of data-
base client 190 may be directed towards various database
applications including web services, data transactions, data
mining, high-performance computing (HPC), and other
applications. A database query 198 may be generated at client
application 194 as a SQL query for execution on database

US 9,390,129 B2

5

table 152, and the query may be routed to an available data-
base server, such as database server 110A. In response, data-
base server 110A may generate a corresponding execution
plan 128, which may be executed in parallel over available
threads on database storage servers 160A-160B and database
servers 110A-110B. As shown in database system 110, each
thread 114A, 114B, 164A, and 164B may allocate a corre-
sponding memory block 124A, 124B, 174A, and 174B,
respectively. If insufficient memory is available, then virtual
memory may be utilized via swap files 132 and 182 of local
storage 130 and 180, respectively. However, as discussed
below, execution plan 128 may be structured to avoid swap-
ping to local storage.

Reporting Window Functions
Reporting window functions are a class of window func-

tions that can be specified in any of a plurality of forms
including but not limited to the following example forms:

FUNCTION_ NAME(<exprl> [, <expr2>...]) OVER (PARTITION
BY <expr3> [, <exprd>, ...])

FUNCTION_NAME((<exprl> [, <expr2>...]) OVER (PARTITION
BY <expr3> [, <expr4>,...] [ORDER BY <expr5>, ...
ROWSIRANGE BETWEEN UNBROUNDED PRECEDING AND
UNBOUNDED FOLLOWING])

The first example form of reporting window function
above may be considered as a reduced form of other forms of
reporting window functions. A reporting function is specified
with a sequence of one or more partition-by keys. Specifi-
cally, each of one or more expressions such as <expr3>,
<exprd>, etc., in the partition-by clause of a reporting win-
dow function as shown above represents a partition-by key.
The sequence of one or more partition-by keys is represented
by a list comprising the one or more expressions such as
<expr3>, <exprd>, etc., in the order as specified in the parti-
tion-by clause. Examples of functions denoted as FUNC-
TION_NAME in the above expressions include but not are
not limited to sum, min, max, count, average, etc. Such a
function may be evaluated over a measure column (e.g., a
“sale_amount” column in a “sales” table), which may be
specified as one of the expressions inside the function.

Database statements may specify multiple reporting win-
dow functions at successive hierarchical levels. For example,
a single database statement can have multiple reporting win-
dow functions (a) “sum(sale) over (partition by year, quarter,
month)”, (b) “sum(sale) over (partition by year, quarter)”, and
(c) “sum(sale) over (partition by year)”, as shown in the
following expression:

SELECT year, quarter, month, sale,

SUM (sale) OVER (PARTITION BY year, quarter,
month) monthly-sales,

SUM (sale) OVER (PARTITION BY year, quarter)
quarterly-sales,

SUM (sale) OVER (PARTITION BY year) yearly-
sales

FROM sales; (€8]

These reporting window functions may be alternatively
referred to as “monthly-sales”, “quarterly-sales”, and
“yearly-sales”, respectively, as their aliases indicate.

15

20

25

35

40

45

50

55

60

65

6

For the purpose of illustration, when the database state-
ment is evaluated against a set of (input) rows, a result row is
returned for each (input) row in the set of rows, as shown in
the following table:

monthly- quarterly- yearly-
Year quarter Month Sale sales sales sales
Y1 Q1 M1 3 3 6 42
Y1 Q1 M2 2 2 6 42
Y1 Q1 M3 1 1 6 42
Y1 Q2 M4 2 2 9 42
Y1 Q2 M5 3 3 9 42
Y1 Q2 M6 4 4 9 42
Y1 Q3 M7 3 3 12 42
Y1 Q3 M8 4 4 12 42
Y1 Q3 M9 5 5 12 42
Y1 Q4 M10 6 6 15 42
Y1 Q4 M11 5 5 15 42
Y1 Q4 M12 4 4 15 42
Y2 Q1 M1 3 3 10 58
Y2 Q1 M2 2 2 10 58
Y2 Q1 M3 5 5 10 58
Y2 Q2 M4 6 6 13 58
Y2 Q2 M5 3 3 13 58
Y2 Q2 M6 4 4 13 58
Y2 Q3 M7 7 7 16 58
Y2 Q3 M8 4 4 16 58
Y2 Q3 M9 5 5 16 58
Y2 Q4 M10 6 6 19 58
Y2 Q4 M11 5 5 19 58
Y2 Q4 M12 8 8 19 58

As can be seen above, each result row may comprise return
database values (the first four columns) of columns of the
input row. In addition, for each input row (or database record)
that comprises specific partition-by key values to indicate a
specific year, a specific quarter and a specific month, a corre-
sponding result row also returns (a) a first aggregated “sale”
value for all rows having the partition-by key values of the
specific year, the specific quarter and the specific month, as
“monthly-sales™; (b) a second aggregated “sale” value for all
rows having the partition-by key values of the specific year
and the specific quarter, as “quarterly-sales”; and (c) a third
aggregated “sale” value for all rows having the partition-by
key value for the specific year, as “yearly-sales”, as requested
by the database statement. The example rows in TABLE 1
comprise duplicate rows of the same combination of values of
partition-by columns of the “yearly-sales” and “quarterly-
sales” reporting window functions but do not comprise dupli-
cate rows of the same combination of values of partition-by
columns of the “monthly-sales” reporting window function.
This is for illustration purposes only. Other types of input data
can be processed with techniques as described herein, includ-
ing input data that comprise duplicate rows for all reporting
window functions.

Shared Sort Order

To evaluate reporting window functions, a set of rows may
be arranged in one of many different ways including but not
limited to sorting, hashing, etc. In some embodiments, the set
of rows may be optionally arranged in a sort order shared by
the reporting window functions. Such a sort order may be
referred to herein as a “shared sort order.” Using a shared sort
order for evaluating multiple reporting window functions
avoids or reduces expensive sort operations that otherwise
may be needed to perform for each of the (multiple) reporting
window functions. This is especially advantageous when the
set of rows is numerous, as sorting can be expensive in terms
of resource usage and response time.

US 9,390,129 B2

7

As illustrated in TABLE 1, a set of result rows with respec-
tive aggregated values ofthe reporting window functions may
be returned in the same shared sort order (e.g., a sort order of
year, quarter, and month) used to internally arrange the set of
(input) rows in database operations to generate the set of
result rows.

A specific sequence of partition-by keys (e.g., year, quarter,
and month) for a specific reporting window function (e.g.,
“monthly-sales”) among the reporting window functions may
be selected or determined as a shared sort order. For example,
it may be determined that since the “quarterly-sales” and
“yearly-sales” reporting window functions are less specific
than the “monthly-sales” reporting window function, the
former reporting window functions are able to share or use the
same sort order of the set of rows for evaluating the latter
reporting window function. Therefore, the set of (input) rows
from a table “sales” may be arranged in the shared sort order
based on the sequence of partition-by keys “year”, “quarter”
and “month” for the “monthly-sales” reporting window func-
tion, as illustrated in TABLE 1.

Common Prefix

A common prefix refers to a subsequence (or a subset of
sequence) of partition-by keys shared by all reporting win-
dow functions in a set of reporting window functions speci-
fied in a database statement. In some embodiments, a com-
mon prefix may be a subsequence of partition-by keys
maximally shared among all the reporting window functions
in the set of reporting window functions. In some other
embodiments, a common prefix may a subsequence of parti-
tion-by keys either maximally or non-maximally shared
among all the reporting window functions in the set of report-
ing window functions. In the example database statement as
shown in expression (1), the common prefix among the three
reporting window functions is the “year” column of the table
“sales”, which is a partition-by key (or a subsequence of one
or more partition-by keys) shared by all three reporting win-
dow functions.

When a database statement such as expression (1) is
executed in parallel in runtime, data distribution to a plurality
of'operators/processes can be done based on distinct values of
acommon prefix. A distinct value of a sequence/subsequence
of partition-by keys—e.g., a common prefix among
sequences of partition-by keys respectively specified for
reporting window functions, a sequence/subsequence of par-
tition-by keys for a particular window function, etc. —refers
to a unique combination of partition-by key values in the
sequence/subsequence of partition-by keys. For example, a
distinct value of a common prefix refers to a unique combi-
nation of partition-by key values in the common prefix.

A common-prefix execution plan refers to a parallel execu-
tion plan for a database statement that uses a common prefix
for data distribution to multiple parallel executing processes
performing underlying database operations. FIG. 2A illus-
trates an example common-prefix execution plan to execute a
database statement comprising reporting window functions
asillustrated in expression (1). The common-prefix execution
plan comprises a plurality of table scan (TSC) operators and
a plurality of window sort operators. Each of these operators
in the common-prefix execution plan may be assigned to a
respective process for execution in runtime. It should be noted
that a TSC is used as an example of a producer operator. One
or more producer operators other than TSC operators may be
used for the purpose of the invention.

Each window sort operator may consume or receive (input)
rows with one or more specific distinct values of a common

20

30

40

45

50

65

8

prefix among the reporting window functions and assigned to
evaluate reporting window functions using the rows having
these specific distinct values of the common prefix.

Each TSC operator may be assigned the task to retrieve
(input) rows or records from a size-comparable portion of
data blocks in a database table and distribute the retrieved
rows to respective window sort operators based on distinct
values of the common prefix as indicated in database values of
the retrieved rows. A TSC operator may use a distribution
function (e.g., a hash function, a range distribution function,
etc.) that takes a distinct value of the common prefix indicated
by database values of an input row as input and returns the
identity of a corresponding window sort operator to which the
input row should be sent or distributed.

Window sort operators/processes receiving their respective
subsets of rows may sort or arrange the received rows into a
shared sort order as mentioned above. Evaluation (e.g., aggre-
gation, averaging, etc.) of all the reporting window functions
in the set of reporting window functions may be performed
against (e.g., sequentially through) the same shared sort
order. Since all rows in a particular subset of rows received by
a particular window sort operator/process share the same
unique combination of key values of the common prefix, the
particular window sort operator/process can compute the
reporting window functions based on the subset of rows,
independent of other window sort operators/processes. The
other window sort operators/processes can concurrently and
independently compute the reporting window functions
based on other subsets of rows that do not share the same
combination of key values of the common prefix as the par-
ticular subset of rows.

Inthe present example, data distribution made to a plurality
of window sort operators/processes (e.g., 204-1 through
204-4 of FIG. 2A) may be based on the “year” column (which
is the only partition-by key in the common prefix in this
example). A window sort operator/process that receives a
subset of rows that share the same key value (e.g., “Y1”) of
the “year” column can proceed to compute each of the report-
ing window functions (for year “Y1”) independent of other
window sort operators/processes that receive other subsets of
rows (for other years “Y2”, “Y3”, etc.) that do not share the
same key value (“Y1”) of the “year” column.

One or more operators—for example, window sort opera-
tors (204-1 through 204-4 of FIG. 2A) —may return the input
rows with fully aggregated values for all reporting window
functions in the set of reporting window functions as a result
set (e.g., TABLE 1) of the database statement.

This parallel execution model works well when the number
of partitions, or the number of subsets of rows created by
distinct values of a common prefix, is sufficiently large to
satisfy one or more criteria relating to a desired degree of
parallelism (DOP).

A DOP refers to a type of parallel processing measure that
indicates how many parallel processing entities/units such as
parallel executing processes should be (approximately) used
for parallel execution of a database statement. For example, a
DOP value of ten may indicate that ten parallel executing
processes may be available for performing one or more opera-
tions in parallel. A user may annotate different tables with the
same or different DOP values. A query optimizer may also
select a DOP value based on one or more factors including
runtime conditions. For example, resource requirements such
as CPU usage, 1/0 usage, etc., for a query may be estimated.
In a non-limiting example, the resource requirements may be
expressed as one or more numeric values. In some embodi-
ments, a minimum time threshold may be defined for a pro-
cessing entity such as a process; this parameter indicates that

US 9,390,129 B2

9

the processing entity should at least be occupied with work
for a minimum time period as indicated by the minimum time
threshold. A DOP value may be automatically determined
based on the resource requirements estimated and the mini-
mum time threshold. In an example, for a query that is esti-
mated to take one minute, if a process requires a minimum
time threshold of 10 seconds in order to perform useful work,
a DOP value of six may be determined. In another example,
for a query that is estimated to take ten minutes, if a process
requires a minimum time threshold of 10 seconds in order to
perform useful work, a DOP value sixty may be determined.
It should be noted that other parallelism measures or param-
eters may be used in addition to or in place of a DOP. For
example, the number of available processes may be directly
used as a parallelism measure; in that case, the number of
distinct values of a data distribution key should be larger than
the number of processes available for executing reporting
operations.

When a common prefix has a small number of distinct
values (NDV), data distribution based on key values of the
common prefix for the purpose of parallel execution does not
scale well and thus fails to fully leverage a database system’s
parallel processing resources. For example, in a database
system with hundreds, thousands, or more potential process-
ing entities (e.g., processes) available for parallel execution of
a database statement, the use of a common prefix (e.g., the
“year” column in the table “sales”) that has only two distinct
values (e.g., “Y1” and “Y2” as illustrated in TABLE 1) for
data distribution would cause many available resources to sit
idle, resulting in poor performance of the database system.

Scalable Evaluation

To overcome scalability issues associated with a low num-
ber of distinct values of a common prefix, scalable computa-
tion algorithms as described herein may be used to evaluate
reporting window functions. These scalable computation
algorithms may include two phases. In the first phase, either
an extended data distribution key or a computation pushdown
approach is used to distribute input rows among a plurality of
operators that perform window aggregation for the reporting
window functions. The window aggregation may be partially
performed by an operator in the plurality of operators for at
least one of the reporting window functions, because the
operator may not have all rows necessary for full window
aggregation of some or all of the reporting window functions.

In the second phase, a plurality of window consolidation
operators (e.g., a type of row source operators) receives all
window aggregations broadcasted by the plurality of opera-
tors that perform the window aggregations in the first phase.
The window consolidation operators are operators configured
to perform full aggregation for any reporting window func-
tion which is partially evaluated in the first phase. While the
window aggregations broadcasted by an individual operator
in the plurality of operators can be partial, each of the plurality
of window consolidation operators can assemble or consoli-
date all partial window aggregations in the broadcasted win-
dow aggregations, resulting in full window aggregations for
all the reporting window functions in the set of reporting
window functions.

Extended Data Distribution Key

An extended data distribution key refers to a sequence of
partition-by keys not shared by all reporting window func-
tions in a set of reporting window functions specified in a
database statement. An extended data distribution key may be

20

25

40

45

60

10

a sequence of partition-by keys possessed exclusively by a
single reporting window function in the set of reporting win-
dow functions. An extended data distribution key may also be
a sequence of partition-by keys shared by two or more, but not
all, reporting window functions in the set of reporting window
functions. In the example database statement as shown in
expression (1), an extended data distribution key among the
three example reporting window functions may be formed by
the “year” column and the “quarter” column of the table
“sales”. Another extended data distribution key among the
three example reporting window functions may be formed by
the “year” column, the “quarter” column and the “month”
column of the table “sales”.

When the database statement is executed in parallel in
runtime, data distribution to a plurality of operators/processes
that perform window aggregation can be done based on dis-
tinct values (or distinct key value combinations) of an
extended data distribution key.

An extended-data-distribution-key execution plan refers to
aparallel execution plan for a database statement that uses an
extended data distribution key for data distribution. FIG. 2B
illustrates an example extended-data-distribution-key execu-
tion plan to execute a database statement comprising report-
ing window functions as illustrated in expression (1). The
extended-data-distribution-key execution plan comprises a
plurality oftable scan (TSC) operators, a plurality of window
sort operators and a plurality of window consolidation opera-
tors. In runtime each of these operators in the extended-data-
distribution-key execution plan may be assigned to a respec-
tive process for execution. It should be noted that in some
embodiments, the TSC operators and the window sort opera-
tors of FIG. 2B may be combined into a plurality of operators
such as a plurality of window-sort-and-TSC operators of FIG.
2C that perform both the TSC operations and the window sort
operations.

Each window sort operator may be associated with one or
more specific distinct values of the extended-data-distribu-
tion-key and assigned to evaluate all the reporting window
functions using input rows having these specific distinct val-
ues of the extended-data-distribution-key. Evaluating report-
ing window functions by an individual window sort operator
in the plurality of window sort operators may only be partially
performed for operations such as sum, min/max, average,
count, etc., for at least one reporting window operation in the
set of reporting window functions. This is so because the
input rows, which are distributed to the individual window
sort operator, with the specific distinct values of the extended-
data-distribution-key may be fewer than the input rows nec-
essary for full window aggregation of a reporting window
function. Such a reporting window function, for example,
may be specified with a sequence of partition-by keys that do
not contain all the partition-by keys of the extended data
distribution key.

Each TSC operator of FIG. 2B may be assigned to retrieve
(input) rows from a respective number of data blocks in a
database table and distribute the retrieved rows to respective
window sort operators based on distinct values of the
extended data distribution key as indicated in database values
of' the retrieved rows. A TSC operator may use a distribution
function that takes a distinct value of the extended data dis-
tribution key indicated by database values of an input row as
input and returns the identity of a corresponding window sort
operator to which the input row should be sent.

Window sort operators/processes receiving their respective
subsets of rows may arrange the received rows based on a
shared sort order. The shared sort order may be an order based
on values of the extended data distribution key. The shared

US 9,390,129 B2

11

sort order may be an order based on values of a sequence of
partition-by keys that is more specific than the extended data
distribution key. Whether partial or full, evaluation (e.g.,
aggregation, averaging, etc.) of all the reporting window
functions in the set of reporting window functions may be
performed by an individual window sort operator/process
against the same shared sort order.

For the purpose of illustration only, an extended data dis-
tribution key is formed by the “year” and “quarter” columns
for parallel execution of the database statement as shown in
expression (1), in accordance with an extended-data-distribu-
tion-key execution plan as illustrated in FIG. 2B. The number
of operators in the extended-data-distribution-key may be
selected or determined based at least in part on a determina-
tion of the NDV of the extended data distribution key and/or
a desired DOP value at either runtime or before the runtime.
For the purpose of illustration only, four window sort opera-
tors 204-1 through 204-4 may be allocated. Input rows with
year “Y1” and quarters “Q1” and “Q2” (two distinct values of
the extended data distribution key: “Y1” and “Q1”; and “Y1”
and “Q2”) are distributed to operator 204-1. Input rows with
year “Y1” and quarters “Q3” and “Q4” (two distinct values of
the extended data distribution key: “Y1” and “Q3”; and “Y1”
and “Q4”) are distributed to operator 204-2. Input rows with
year “Y2” and quarters “Q1” and “Q2” (two distinct values of
the extended data distribution key: “Y2” and “Q1”; and “Y2”
and “Q2”) are distributed to operator 204-3. Input rows with
year “Y2” and quarters “Q3” and “Q4” (two distinct values of
the extended data distribution key: “Y2” and “Q3”; and “Y2”
and “Q4”) are distributed to operator 204-4. For a given input
row, a TSC operator (e.g., 202-1) may determine a destination
window sort operator to which the input row should be sent
based on a distribution function that takes the “year” and
“quarter” column values from the input row.

Since data distribution made to a plurality of window sort
operators/processes is based on the “year” and “quarter” col-
umn (which are keys of the extended data distribution key), a
window sort operator/process (one of 204-1 through 204-1 in
FIG. 2B) may receive and aggregate only a subset of input
rows that are not sufficient for fully evaluating at least one
(e.g., the “yearly-sales” reporting window functions) of the
reporting window functions. For example, window sort
operator/process 204-1 receives input rows in the following
table:

TABLE 2
monthly- quarterly- yearly-
Year quarter month Sale sales sales sales
Y1 Q1 M1 3 3 6 15
Y1 Q1 M2 2 2 6 15
Y1 Q1 M3 1 1 6 15
Y1 Q2 M4 2 2 9 15
Y1 Q2 M5 3 3 9 15
Y1 Q2 M6 4 4 9 15

Similarly, window sort operator/process 204-2 receives
input rows in the following table:

TABLE 3
monthly- quarterly- yearly-
Year quarter month Sale sales sales sales
Y1 Q3 M7 3 3 12 27
Y1 Q3 M8 4 4 12 27
Y1 Q3 M9 5 5 12 27
Y1 Q4 M10 6 6 15 27

20

40

45

50

55

60

65

TABLE 3-continued
monthly- quarterly- yearly-
Year quarter month Sale sales sales sales
Y1 Q4 Mi11 5 5 15 27
Y1 Q4 M12 4 4 15 27

Window sort operator/process 204-3 receives input rows in
the following table:

TABLE 4
monthly- quarterly- yearly-
Year quarter month Sale sales sales sales
Y2 Q1 M1 3 3 10 23
Y2 Q1 M2 2 2 10 23
Y2 Q1 M3 5 5 10 23
Y2 Q2 M4 6 6 13 23
Y2 Q2 M5 3 3 13 23
Y2 Q2 M6 4 4 13 23

Window sort operator/process 204-4 receives input rows in
the following table:

TABLE 5
monthly- quarterly- yearly-
Year quarter month Sale sales sales sales
Y2 Q3 M7 7 7 16 35
Y2 Q3 M8 4 4 16 35
Y2 Q3 M9 5 5 16 35
Y2 Q4 M10 6 6 19 35
Y2 Q4 M11 5 5 19 35
Y2 Q4 M12 8 8 19 35

Under a parallel execution strategy that employs an
extended data distribution key for data distribution, an opera-
tor or a process working on its respective input rows or data
partitions requires locally aggregated information about other
input rows or data partitions processed by other operators or
parallel executing processes, in order to fully evaluate the
reporting window functions. In the present example, window
sort operator 204-1 of FIG. 2B only has a partial aggregated
value for the “yearly-sales™ reporting window function in the
set of reporting window functions after window sort operator
204-1 finishes window function computation on the input
rows or data partitions which window sort operator 204-1 has
received. Reporting window functions for which operators or
parallel executing processes executing the operators have
partial aggregated values may be referred to herein as “to-be-
consolidated” window functions. Apparently, these “to-be-
consolidated” window functions have relatively low—as
compared with the desired DOP value or as compared with
the desired DOP value multiplied by a scaling factor (e.g., 2,
3, etc.)—NDVs in their own sequences of partition-by keys
based on a query optimizer’s statistical estimation. Other-
wise, one or more of their own sequences of partition-by keys
would have been chosen to be data distribution keys or
extended data re-distribution keys in order to avoid partial
aggregated values to the extent possible for these “to-be-
consolidated” window functions.

A second consolidation phase is used to compute the full
aggregated values of these “to-be-consolidated” window
functions. Data received and processed by window sort
operators or parallel executing processes is redistributed to
another set of parallel executing processes implementing
window consolidation operators (e.g., 206-1 through 206-4 of

US 9,390,129 B2

13
FIG. 2B). The window consolidation operators (206-1
through 206-4 of FI1G. 2B) perform the consolidation of par-
tial aggregated values of “to-be-consolidated” window func-
tions and return result rows with fully aggregated values (as
illustrated in TABLE 1) for all the reporting window func-
tions in the set of reporting window functions.

In some embodiments, window sort operators 204-1
through 2044 first broadcast the partially aggregated values
for those “to-be-consolidated” window functions to window
consolidation operators 206-1 through 206-4. The broad-
casted data is expected to have a small size due to the fact that
those “to-be-consolidated” window functions have low
NDVs on their sequences of partition-by keys. In the present
example, there is only one reporting window function,
“yearly-sales”, for which the partially aggregated values (one
from each of window sort operators 204-1 through 204-4) are
to be broadcasted to the window consolidation operators. For
example, window sort operator 204-1 broadcasts the partially
aggregated value “15” in TABLE 2 to each of window con-
solidation operators 206-1 through 206-4. Similarly, window
sort operators 204-2 through 204-4 broadcast the partially
aggregated values “27”,“23” and “35” in TABLEs 3,4 and 5,
respectively, to each of window consolidation operators
206-1 through 206-4.

The partial aggregated values of the “to-be-consolidated”
window functions may be broadcasted by window sort opera-
tors 204-1 through 204-4 with partition-by key values of the
“to-be-consolidated” reporting window functions. Each of
window consolidation operator (206-1 through 206-4) con-
solidates these partial aggregated values and places the con-
solidated values into hash tables with the partition-by key
values as hash keys. The term “consolidate” or “consolida-
tion” may mean specific consolidation operations for specific
types of reporting window functions, for example, summing
partial sums for a sum() reporting window function, sum-
ming partial counts for a count() reporting window function,
etc. In the present example, the “yearly-sales” reporting win-
dow function is a “to-be-consolidated” window function.
Year “Y1” corresponds to two partial aggregated values “15”
and “27” of the “yearly-sales” reporting window function,
and is hence used by each window consolidation operator as
a hash key to consolidate the two partial aggregated values
“15” and “27” to “42” for year “Y1” and place the consoli-
dated value “42” of the “yearly-sales” reporting window
function in a hash table for the same (“to-be-consolidated”)
reporting window function, “yearly-sales”. Similarly, year
“Y2” corresponds to two partial aggregated values “23” and
“35” of the “yearly-sales”, and is hence used by each window
consolidation operator as a hash key to consolidate and place
the two partial aggregated values “23” and “35” (consolidated
to “58” foryear “Y2”) of the “yearly-sales” reporting window
function in a hash table for the same (“to-be-consolidated”)
reporting window function.

In an embodiment, window sort operators 204-1 through
204-4, or the parallel executing processes implementing these
operators at runtime, are configured to randomly redistribute
input rows (received by individual window sort operators
204-1 through 204-4 from TSC operators 202-1 through
202-4 based on a distribution function such as a hash function
hash(year, quarter)) among window consolidation operators
206-1 through 206-4. Each of the randomly redistributed
input rows comprises non-reporting window function col-
umns (in the present example, retrieved database values for
“year”, “quarter”, “month”, “sale”, etc.) and/or may be
expanded with columns that carry fully aggregated values of
any reporting window functions with fully aggregated values.
In the present example, full aggregated values (e.g., the

25

30

35

40

45

14

“monthly-sales” value “3” and the “quarterly-sales™ value
“10” for year “Y2”, quarter “Q1” and month “M1”; the
“monthly-sales” value “2” and the “quarterly-sales™ value
“9” foryear “Y1”, quarter “Q2” and month “M4”; etc.) for the
“quarterly-sales” and “monthly-sales” reporting window
functions may be carried by newly expanded columns (e.g.,
“quarterly-sales” and “monthly-sales”) in input rows corre-
sponding to respective partition-by key values (e.g., year
“Y2”, quarter “Q1” and month “M1”; year “Y1”, quarter
“QQ2” and month “M4”; etc.).

After the input rows with expanded columns are received
by a window consolidation operator (e.g., 206-1), for each of
the input rows, the window consolidation operator (206-1)
probes hash tables (hash tables are for illustration only; any
access structure for one or more sorting, looking up or group-
ing operations may be used in place of hash tables) to get fully
aggregated values for the “to-be-consolidated” window func-
tions based on partition-by key values carried by that input
row. In the present example, for an input row carrying parti-
tion-by key values of year “Y2”, quarter “Q1” and month
“M1”, the window consolidation operator (206-1) probes the
hash table with a hash key of year “Y2” for the “to-be-
consolidated” window function, “yearly-sales”, to get a fully
aggregated value “58”. Accordingly, the window consolida-
tion operator (206-1) may place the fully aggregated value
“58” into an expanded column “yearly-sales” of the input row
corresponding to year “Y2”. In some embodiments, the
expanded column “yearly-sales” of the input row may ini-
tially contain a null value when the input row was received by
the window consolidation operator (206-1) from a window
sort operator (e.g., 204-3). It should be noted that consolida-
tion of partially aggregated values of reporting window func-
tions may be performed by a single process such as a query
coordinator or by multiple processes such as the window
consolidator operators. The use of a single consolidation pro-
cess may reduce redundant consolidation as compared with
the approach of using multiple window consolidators, but has
the caveat that the single consolidation process such as the
query coordinator may be overloaded. In addition, when mul-
tiple consolidation processes are used, an alternative way of
carrying out the consolidation of partially evaluated reporting
window functions is for one or more of the multiple processes
to do its respective consolidation and pass its respective con-
solidated results to others of the multiple processes via shared
memory over a communication network. For example, con-
solidation can be done in the following non-exhaustive list of
possible configurations: (1) by the query coordinator; (2) by
one process; (3) by one process per instance; or (4) by all
participating consolidator processes. In the cases of (1), (2)
and (3), the consolidated results can be communicated to the
processes that perform window consolidation operations. In
the case of (4), since each consolidation process performs
consolidation, no communication such as used in the cases of
(1), (2) and (3) is required. In some embodiments, addition-
ally, optionally, or alternatively, one window consolidator
may be deployed on each instance with shared-memory com-
munication capability.

One or more operators, for example, window consolidation
operators 206-1 through 206-4, may return the input rows
with fully aggregated values (or consolidated values) for all
reporting window functions in the set of reporting window
functions as a result set (e.g., TABLE 1) of the database
statement.

Computation Pushdown

Computation pushdown refers to an approach of pushing
down, or placing, one or more operations related to generat-

US 9,390,129 B2

15

ing a result set with aggregated values of reporting window
function into producer operators. Each of the producer opera-
tors may be tasked to produce input rows for partial evalua-
tion of reporting window functions based on the input rows.
Examples of producers include but not limited to table scans,
joins, aggregations, subqueries, etc. from table scans, joins,
sub-queries, nested queries, logical views, etc.

A computation-pushdown execution plan refers to a paral-
lel execution plan for a database statement that uses compu-
tation pushdown for data distribution. FIG. 2C illustrates an
example computation-pushdown execution plan to execute a
database statement comprising reporting window functions
as illustrated in expression (1). The computation-pushdown
execution plan comprises a plurality of (combined) window
sort and table scan (TSC) operators (e.g., 208-1 through 208-
4) and a plurality of window consolidation operators (206-1
through 206-4 of FIG. 2C). Each of these operators in the
computation-pushdown execution plan may be assigned to a
respective process for execution in runtime.

In the computation-pushdown execution plan, each win-
dow-sort-and-TSC operator may not be associated only with
specific distinct values of a common prefix or an extended-
data-distribution-key. Instead, each window-sort-and-TSC
operator may be assigned to evaluate all reporting window
functions in a set of reporting window functions of the data-
base statement using input rows; the input rows may be
retrieved from one or more data blocks from which the win-
dow-sort-and-TSC operator is assigned to read. Evaluating
reporting window functions by an individual window-sort-
and-TSC operator in the plurality of window-sort-and-TSC
operators may only be partially performed for operations
such as sum, min/max, average, count, etc., for all the report-
ing window operations in the set of reporting window func-
tions. This is so because input rows available to a specific
window-sort-and-TSC operator (e.g., 208-1) may be fewer
than all input rows necessary for full window aggregation of
a reporting window function, as some of the input rows nec-
essary for the full window aggregation of the reporting win-
dow function may be produced or read by other window-sort-
and-TSC operators (e.g., one or more of 208-2 through 208-
4).

Each window-sort-and-TSC operator may be assigned to
retrieve (input) rows or records from a size-comparable por-
tion of data blocks in a database table. A window-sort-and-
TSC operators/process (e.g., 208-1) receives or produces its
respective subsets of rows, which may be of any key values of
partition-by keys of any reporting window function in the set
of window functions. The window-sort-and-TSC operators/
process (208-1) arranges the received rows based on a shared
sort order. The shared sort order may be an order based on
distinct values of a sequence of partition-by keys in a set of
sequences of partition-by keys associated with the set of
reporting window functions. In a particular embodiment, the
shared sort order may be an order based on distinct values of
the longest sequence of partition-by keys in the set of
sequences of partition-by keys. Partial evaluation (e.g.,
aggregation, averaging, etc.) of all the reporting window
functions in the set of reporting window functions may be
performed against the same shared sort order. For the purpose
of illustration, window sort and sort operator/process 208-1
receives and sorts input rows based on a share sort order as
defined by key values of the partition-by keys “Year”, “Quar-
ter”, and “month” of the “monthly-sales” reporting window
function.

Each window sort and sort operator/process (e.g., 208-1)
may be configured to expand each of the input rows with
additional columns to store values of all the reporting window

20

30

40

45

16

functions (“monthly-sales”, “quarterly-sales”, “yearly-
sales”). Window sort and sort operator/process 208-1 may be
configured to partially aggregate the input rows for all the
window functions, and store partially aggregated values of all
the reporting functions as shown in the following table:

TABLE 6
monthly- quarterly- yearly-
Year quarter month sale sales sales sales
Y1 Q1 M1 3 3 3 21
Y1 Q3 M8 4 4 9 21
Y1 Q3 M9 5 5 9 21
Y2 Q2 M4 6 6 9 26
Y2 Q2 M5 3 3 9 26
Y2 Q4 M12 8 8 8 26

Similarly, window sort and sort operator/process 208-2
receives and sorts input rows based on the share sort order as
defined by key values of the partition-by keys “Year”, “Quar-
ter”, and “month”. Window sort and sort operator/process
208-2 may be configured to partially aggregate the input rows
for all the window functions, and store partially aggregated
values of all the reporting functions as shown in the following

table:

TABLE 7
monthly- quarterly- yearly-
Year quarter month sale sales sales sales
Y1 Q1 M2 2 2 3 8
Y1 Q1 M3 1 1 3 8
Y1 Q2 M4 2 2 2 8
Y2 Q3 M9 5 5 5 16
Y2 Q4 M10 6 6 11 16
Y2 Q4 M11 5 5 11 16

Window sort and sort operator/process 208-3 receives and
sorts input rows based on the share sort order as defined by
key values of the partition-by keys “Year”, “Quarter”, and
“month”. Window sort and sort operator/process 208-3 may
be configured to partially aggregate the input rows for all the
window functions, and store partially aggregated values of all
the reporting functions as shown in the following table:

TABLE 8
monthly- quarterly- yearly-
Year quarter Month sale sales sales sales
Y1 Q2 M5 3 3 3 7
Y1 Q4 M12 4 4 4 7
Y2 Q1 M1 3 3 5 16
Y2 Q1 M2 2 2 5 16
Y2 Q3 M7 7 7 11 16
Y2 Q3 M8 4 4 11 16

window sort and sort operator/process 208-4 receives and
sorts input rows based on the share sort order as defined by
key values of the partition-by keys “Year”, “Quarter”, and
“month”. Window sort and sort operator/process 208-4 may
be configured to partially aggregate the input rows for all the
window functions, and store partially aggregated values of all
the reporting functions as shown in the following table:

US 9,390,129 B2

TABLE 9
monthly- quarterly- yearly-
Year quarter Month sale sales sales sales
Y1 Q2 M6 4 4 4 18
Y1 Q3 M7 3 3 3 18
Y1 Q4 M10 6 6 18
Y1 Q4 M11 5 5 20
Y2 Q1 M3 5 5 5 20
Y2 Q2 M6 4 4 4 20

Under the computation-pushdown execution strategy, an
operator or process working on input data items of its respec-
tive data portions or data partitions may require information
about other input data items processed by other operators or
parallel executing processes to fully evaluate or aggregate all
the reporting window functions. In the present example, each
ofwindow-sort-and-TSC operators 208-1 through 208-4 may
have only a partial aggregated value for the reporting window
functions in the set of reporting window functions after the
window-sort-and-TSC operator finishes window function
computation on the input rows the window-sort-and-TSC
operator received. Thus, all the reporting window functions
are “to-be-consolidated” window functions. These “to-be-
consolidated” window functions have relatively low NDVs,
in relation to the desired DOP, on their partition-by keys based
on a query optimizer’s statistical estimation, as otherwise a
common prefix or an extended data distribution key could
have been chosen in order to avoid partial aggregated values
for at least one of the reporting window functions.

A second consolidation phase may be used to compute the
full aggregated values of the “to-be-consolidated” window
functions. Data received and processed by individual win-
dow-sort-and-TSC operators (e.g., 208-1 through 208-4 of
FIG. 3C) or parallel executing processes implementing these
operators are (e.g., randomly) redistributed to another set of
parallel executing processes implementing window consoli-
dation operators (e.g., 206-1 through 206-4 of FIG. 2C). Each
of'the window consolidation operators (206-1 through 206-4
of FIG. 2C) performs the consolidation of partial aggregated
values of “to-be-consolidated” window functions and returns
resulting rows (e.g., input rows each with expanded columns
for the reporting window functions) with fully aggregated
values for all the reporting window functions in the set of
reporting window functions of the database statement.

In some embodiments, window-sort-and-TSC operators
208-1 through 208-4 first broadcast the partially aggregated
values for each of the “to-be-consolidated” window functions
to window consolidation operators 206-1 through 206-4 of
FIG. 2C. The broadcasted data is expected to have a small
size, as those “to-be-consolidated” window functions have
low NDVs on their partition-by keys.

In the present example, all three reporting window func-
tions may comprise partially aggregated values from each of
window sort operators 204-1 through 204-4. Partially aggre-
gated values for each of the three reporting window function
are broadcasted by each of window-sort-and-TSC operators
208-1 through 208-4 to the window consolidation operators.
For example, for the reporting window function “quarterly-
sales”, window-sort-and-TSC operator 208-1 broadcasts the
partially aggregated values “3”, “9”, “9”, and “8” (which
correspond to the partially aggregated values for year “Y1”
and “quarter “Q1”; year “Y1” and “quarter “Q3”; year “Y2”
and “quarter “Q2”; and year “Y2” and “quarter “Q4”) in
TABLE 6 to each of window consolidation operators 206-1
through 206-4.

10

25

30

40

45

55

18

In the computation-pushdown execution strategy, each of
all the reporting window functions may be partially aggre-
gated by window-sort-and-TSC operators and then consoli-
dated by consolidation operators. For the purpose of illustra-
tion only, the “quarterly-sales” reporting window function is
used to illustrate how this strategy may be carried out. It
should be understood that each of the other reporting window
functions such as “yearly-sales” or “monthly-sales” may be
similarly evaluated. As can be seen in TABLE 6, some par-
tially aggregated values may be repeated in multiple rows.
For example, two input rows processed by window-sort-and-
TSC operator 208-1 carry the partially aggregated value “9”
for year “Y1” and “Q3”. To avoid over-accounting of these
repeated values, after partial aggregation is performed for all
input rows by a window-sort-and-TSC operator such as 208-
1, the window-sort-and-TSC operator (208-1) sequentially
traverses through all the input row along the shared sort order
and broadcasts only the partially aggregated value of the
reporting window function in the last row immediately after
which a data partition crossover or an end-of-data is detected.
For example, for the reporting window function “quarterly-
sales”, as window-sort-and-TSC operator 208-1 sequentially
traverses the input rows after the partial aggregation for the
reporting window function is performed, a data partition
crossover for the reporting window function, from a data
partition of year “Y1” and quarter “Q1” to another data par-
tition of year “Y1” and quarter “Q3”, is detected when the
second row of TABLE 6 is processed. At that point, the
partially aggregated value “3” of the reporting window func-
tion in the last row (input row 1) from the currently processed
row (input row 2) is broadcasted by window-sort-and-TSC
operator 208-1 to all the window consolidation operators. A
data partition crossover for the reporting window function is
not detected when the third row of TABLE 6 is processed as
both the second and third rows belong to the same data par-
tition of year “Y'1” and quarter “Q3” for the reporting window
function. At that point, the partially aggregated value “9” of
the reporting window function in the last row (input row 2)
from the currently processed row (input row 3) is not broad-
casted by window-sort-and-TSC operator 208-1 to all the
window consolidation operators. On the other hand, a data
partition crossover for the reporting window function is again
detected when the fourth row of TABLE 6 is processed as the
third and fourth rows belong to two different data partitions of
year “Y1” and quarter “Q3” and of year “Y2” and “Q2” for
the reporting window function. At that point, the partially
aggregated value “9” of the reporting window function in the
lastrow (input row 2) from the currently processed row (input
row 3) is broadcasted by window-sort-and-TSC operator
208-1 to all the window consolidation operators.

Similarly, window sort operators 204-2 through 204-4
broadcast the partially aggregated values for each of the
reporting window functions in TABLEs 7, 8 and 9, respec-
tively, to each of window consolidation operators 206-1
through 206-4, whenever a data partition crossover for the
each of the reporting window functions is detected in sequen-
tial traversals of input rows.

The partial aggregated values for each “to-be-consoli-
dated” window function, as aggregated and broadcasted by
window sort operators 204-1 through 204-4, may be consoli-
dated and placed into hash tables or any mechanism to lookup
values based on keys with corresponding partition-by key
values (which are associated with or correspond to the broad-
casted partial aggregated values) of a respective sequence of
partition-by keys of the “to-be-consolidated” window func-
tion as hash keys, as explained above with the extended data
distribution key execution strategy.

US 9,390,129 B2

19

In some embodiments, each of window-sort-and-TSC
operators 208-1 through 208-4, or the parallel executing pro-
cesses implementing these operators at runtime, is configured
to randomly redistribute input rows among window consoli-
dation operators 206-1 through 206-4. Each of the randomly
redistributed input rows comprises non-reporting window
function values (in the present example, retrieved database
values for “year”, “quarter”, “month”, “sale”, etc.) and may
be expanded to carry null values of any reporting window
functions. After the input rows with expanded columns are
received by a window consolidation operator (e.g., 206-1),
for each of the input rows, the window consolidation operator
(206-1) probes hash tables to get fully aggregated values for
the “to-be-consolidated” window functions based on has keys
derived from partition-by key values carried by that input row.
Each of the hash tables contains fully aggregated values of a
corresponding window reporting function that are aggregated
from the broadcasted partially aggregated values. In the
present example, for an input row carrying partition-by key
values of year “Y1”, quarter “Q2” and month “M6”, the
window consolidation operator (206-1) probes a first hash
table for the “to-be-consolidated” window function,
“monthly-sales™, to get a fully aggregated value “4” with a
hash key of year “Y1”, quarter “Q2” and month “M6”.
Accordingly, the window consolidation operator (206-1) may
place the fully aggregated value “4” into an expanded column
“monthly-sales” of the input row. In some embodiments, the
expanded column “monthly-sales™ of the input row may ini-
tially contain a null value when the input row was received by
the window consolidation operator (206-1) from a window-
sort-and-TSC operator (e.g., 208-4). Similarly, for the same
input row, the window consolidation operator (206-1) probes
a second hash table for the “to-be-consolidated” window
function, “quarterly-sales”, to get a fully aggregated value
“9” with a hash key of year “Y1” and quarter “Q2”. Accord-
ingly, the window consolidation operator (206-1) may place
the fully aggregated value “9” into an expanded column
“quarterly-sales” of the input row. Also, for the same input
row, the window consolidation operator (206-1) probes a
third hash table for the “to-be-consolidated” window func-
tion, “yearly-sales”, to get a fully aggregated value “42” with
a hash key of year “Y1”. Accordingly, the window consoli-
dation operator (206-1) may place the fully aggregated value
“42” into an expanded column “yearly-sales” of the input
row. The same steps may be similarly performed in parallel by
each of the remaining window consolidation operators 206-2
through 206-4.

One or more operators, for example window consolidation
operators 206-1 through 206-4, may return the input rows
with fully aggregated values (or consolidated values) for all
reporting window functions in the set of reporting window
functions as a result set (e.g., TABLE 1) of the database
statement.

It has been described that double counting of partially
aggregated values can be prevented by detecting partition
boundaries in a shared sort order. However, other ways of
providing partially aggregated values between two sets of
parallel executing processes may be used, including those not
based on a shared sort order. For example, instead of storing
and repeating partially aggregated values in multiple rows
with the same values of partition-by columns, the partially
aggregated values can be separately stored in one or more
lookup tables with distinct values of partition-by keys,
instead of being repeated in multiple rows. The distinct values
of partition-by keys can be provided to window consolidation
operators with the partially aggregated values of reporting
window functions. The consolidation operators can consoli-

10

15

20

25

30

35

40

45

50

55

60

65

20

date the partially aggregated values using the distinct values
of partition-by columns provided with the partially aggre-
gated values.

Broadcast and Consolidation of Partial Aggregated
Values

As has been described and will be further described, partial
aggregated values for to-be-consolidated reporting window
functions can be broadcasted from a first set of parallel
executing processes such as window sort operators to a sec-
ond set of parallel executing processes such as window con-
solidation operators. In some embodiments, partial aggre-
gated values of each to-be-consolidated reporting window
function can be broadcasted with values of partition-by col-
umns of that to-be-consolidated reporting window function.
In some embodiments, only partial aggregated values of the
to-be-consolidated reporting window function that has the
most columns are broadcasted with its values of partition-by
columns; these partially aggregated values can be used by
window consolidation operators to derive full evaluated
aggregated values of all to-be-consolidated reporting window
functions.

For the purpose of illustration only, an extended data dis-
tribution key comprising the “year”, “quarter” and “month”
columns is used to distribute data from (e.g., two) window
sort operators to a plurality of window consolidation opera-
tors. The to-be-consolidated reporting window functions are
the “yearly-sales” and “quarterly-sales” reporting window
function the latter of which has the most (or the more) col-
umns among the two to-be-consolidated reporting window
functions. The first of the two window sort operators com-
putes, based on its subset of input data (different from and
unrelated to the input data of TABLEs 1-9), partially aggre-
gated values of the “quarterly-sales” reporting window func-
tion, as shown in the following table:

TABLE 10
quar-
yearly- terly-
quar- sales sales
Year ter Month Sale (local) (local) ***notes™**
Y1 Q1 M1 1 9 5
Y1 Q1 M1 1 9 5
Y1 Q1 M1 1 9 5
Y1 Q1 M2 1 9 5
Y1 Q1 M3 1 9 5
Y1 Q2 M4 1 9 4 A new combination
of partition-by
column values is
found for the
“year” and “quarter”
columns: broadcast
the “quarterly-
sales™ value 5
with partition-
by column values
“Y1” and “Q1” in
the previous row;
Y1 Q2 M5 1 9 4
Y1 Q2 M6 1 9 4
Y1 Q2 M6 1 9 4
Y2 Q1 M1 1 7 4 A new combination
of partition-by
column values is
found for the
“year” and “quarter”
columns: broadcast
the “quarterly-
sales” value 4
with partition-

US 9,390,129 B2

TABLE 10-continued TABLE 11
quar- quarterly- yearly- quarterly-
yearly- terly- sales sales sales
quar- sales sales 5 Year quarter (local) (global) (global) ***notes***
KKK K KK
Year ter Month Sale (local) (local) notes vi Q1 5 18 10 First row, insert Y17,
by column values ‘.EQl”’ 18" and *10”
“Y17 and “Q27 i into hash table
0 and °Q n Y1 Q1 5 18 10
f previous row; Y1 Q2 4 18 8 A new combination of
A SO, & NEW 10 partition-by column
partition-by column values “Y1” and “Q2”
value is found for is found; insert “Y1”,
the “year” column: “Q2”, “18” and “8”
in some embodiments, into hash table
broadcast the “yearly- Y1 Q2 4 18 8
sales” value 9 with 15 Y2 Q1 4 14 8 A new combination of
partition-by column partition-by column
values “Y1” in values “Y2” and “Q1”
the previous row is found; insert “Y2”,
Y2 Q. M2 1 7 4 “Q1%, “14 and “8”
Y2 Q1 M2 1 7 4 into hash table
poaow T 2 vo&@ 5 4 6 Anewcombinarionor
Y2 Q2 M4 1 7 3 A new combination Q new combination o
£ partition-b partition-by column
orp Y . values “Y2” and “Q2”
column values is is found; insert “Y2”,
found; broadcast the “Q2”,“14” and “6”
“quarterly-sales” into hash table
value 4 with partition- 25 Y2 Q2 3 14 6
by column values
“Y2” and “Q1” in . . .
the previous row As can be seen above, to-be-consolidated reporting win-
Y2 Q2 M5 1 7 3 dow functions with columns fewer than columns of another
Y2 Q2 M6 1 7 3 Endof data: broadcast to-be-consolidated reporting window function may be fully

the “quarterly-sales”
value 3 with partition-
by column values
“Y2” and “Q2” in

the present last row;
end of data: in some
embodiments, also
broadcast the “yearly-
sales” value 7 with
partition-by column
values “Y2” in the

previous row

In some embodiments, each row in the above table contains
a column to store an aggregated value of the “monthly-sales”
reporting window function as computed by the first window
sort operator. In some embodiments, only the “quarterly-
sales” reporting window function values are broadcasted by
the first window sort operator to the window consolidation
operators.

Similarly, the second of the two window sort operators
computes, based on its subset of input data (different from and
unrelated to the input data of TABLEs 1-9), partially aggre-
gated values of the “yearly-sales” and “quarterly-sales”
reporting window functions. For the purpose of illustration
only, the second window sort operator has rows parallel to
those shown in TABLE 10. In some embodiments, only the
“quarterly-sales” reporting window function values are
broadcasted by the second window sort operator to the win-
dow consolidation operators.

Each of the window consolidation operators can consoli-
date the partial aggregated results of the “quarterly-sales”
reporting window function from the two window sort opera-
tors into fully aggregated results of both the “yearly-sales”
and “quarterly-sales” reporting window functions, as shown
in the following table:

30

35

40

45

50

55

60

65

aggregated by parallel executing processes that perform con-
solidation based on the aggregated results of the other to-be-
consolidated reporting window function. In some embodi-
ments, a to-be-consolidated reporting window function with
column(s) fewer than columns of other to-be-consolidated
reporting window function(s) may be fully aggregated by
parallel executing processes that perform consolidation based
on the partial results of the to-be-consolidated reporting win-
dow function. In some embodiments, the former to-be-con-
solidated reporting window functions optionally need not to
even be partially evaluated prior to the window consolidation
operators, but instead can be fully evaluated by the window
consolidation operators based on the aggregated results of the
latter to-be-consolidated window function that has the most
columns. Furthermore, the fully aggregated values of all the
to-be-consolidated reporting window functions can be stored
in a lookup table (e.g., hash table) with the distinct values of
the columns of the formerly to-be-consolidated reporting
window function that has the most partition-by columns. For
a given row, column values of partition-by columns for each
formerly to-be-consolidated reporting window function as
determined from the given row can be used as a lookup key to
the lookup table to locate a fully aggregated value of the
formerly to-be-consolidated reporting window function. The
fully aggregated value can be stored with or added into the
given row in a result set.

Execution Plan Generation

FIG. 1B is a block diagram that depicts the generation of
exemplary query execution plans using a query optimizer.
FIG. 1B depicts a query execution plan generator 115, a query
optimizer 126, a common-prefix execution plan 128A, an
extended-data-distribution-key execution plan 128B, a com-
putation-pushdown execution plan 128C, a database storage
subsystem 150, and a database query 198 (e.g., expression
(1)). Database storage subsystem 150 includes static query

US 9,390,129 B2

23

statistics 151. Common-prefix execution plan 128 A includes
TSC operators 202 and window sort operators 204. Extended-
data-distribution-key execution plan 128B includes TSC
operators 202, window sort operators 204, and window con-
solidation operators 206. Computation-pushdown execution
plan 128C includes window-sort-and-TSC operators 208 and
window consolidation operators 206. With respect to FIG.
1B, like numbered elements may correspond to the same
elements from FIG. 1A.

In FIG. 1B, a database query 198, which is a database
statement (e.g., expression (1)) comprising a set of reporting
window functions, is provided for processing by database
system 100 of FIG. 1A. Database query 198 is carried out on
a “sales” table corresponding to TABLE 1. The “sales” table
may be stored in database table 152 of FIG. 1A. Specifically,
database query 198 is structured as a database statement (e.g.,
SQL statement) as illustrated in expression (1). In this man-
ner, a user can retrieve individual input rows with “monthly-
sales”, “quarterly-sales”, and “yearly-sales”.

As shown in FIG. 1B, the database query 198 is processed
through query execution plan generator 115. An intermediate
execution plan may result, which is further processed through
query optimizer 126. Query optimizer 126 may modify the
intermediate execution plan based on the estimated number of
distinct values of sequences and common prefixes of parti-
tion-by keys. In response to determining that a common pre-
fix with a sufficient number of distinct values for data distri-
bution in parallel execution exists, a common-prefix
execution plan such as 128A is provided, where full aggre-
gation is only carried out at window sort operators 204. In
response to determining that an extended data distribution
key with a sufficient number of distinct values for data distri-
bution in parallel execution exists, an extended-data-distribu-
tion-key execution plan such as 128B is provided, where
partial aggregation is carried out at window sort operators 204
for at least one of the reporting window functions and full
aggregation is carried out at window consolidation operators
206 for the at least one of the reporting window functions. In
response to determining that neither a common prefix nor an
extended data distribution key with a sufficient number of
distinct values for data distribution in parallel execution
exists, a computation-pushdown execution plan such as 128C
is provided, where window sort computation is pushed down
into producer operators (e.g., pushed down into TSC opera-
tors), partial aggregation is carried out at window-sort-and-
TSC operators 208 for all the reporting window functions,
and full aggregation is carried out at window consolidation
operators 206 for the all the reporting window functions.

It may be noted that database query 198 only contains a
single set of reporting window functions for simplicity. How-
ever, database query 198 may also include multiple set of
reporting window functions, each set maybe evaluated in a
similar manner by query optimizer 126. Additionally, it can
be observed that execution plans 128A, 128B and 128C are
two-level and three-level plans in which TSC operators and
window-sort-and-TSC operators are record (or input row)
sources for window sort operators and for window consoli-
dation operators, respectively. However, the methods and
procedures discussed in the present application are generally
applicable for producer operators of any execution plan,
regardless of complexity or specific structure. Thus, record
sources for window sort operators or window consolidation
operators are not restricted to table scans and could be other
operators such as table joins or even other window sort opera-
tors or window consolidation operators.

Statistics Drawbacks

Query optimizer 126 uses static query statistics 151 from
database storage subsystem 150 to estimate various distinct

40

45

65

24

values of sequences/subsequences of partition-by keys of
reporting window functions that may be expected from data-
base query 198. Static query statistics 151 may include data
concerning prior queries against database table 152 and vari-
ous numbers of distinct values observed. However, since
static query statistics 151 is based on past data and may be
updated on an infrequent periodic basis, static query statistics
151 may reflect an outdated and stale model of the actual data
records stored in database table 152 of database storage sub-
system 150. Presence of filter predicates, joins, etc., in a
database statement complicates any determination of statis-
tics that could maintain accuracy at runtime. Thus, the data
available in static query statistics 151 may not directly
address the specific set of reporting window functions
requested in database query 198. As a result, the estimated
numbers of distinct values from query optimizer 126 may be
inaccurate, precluding correct optimization of execution
plans.

Adaptive Parallel Execution Plan

To overcome the shortcomings of the query optimizer
approach, an adaptive parallel execution approach is intro-
duced. As used herein, the term “adaptive” means that a set of
parallel executing processes in runtime, initially execute one
of common prefix, extended key and pushdown plans, moni-
tor the actual numbers of distinct values of all combinations
of partition-by keys (e.g., from a reporting window function
that specifies the largest number of partition-by keys) includ-
ing any common prefix based on input rows produced in the
runtime (by some of the processes), and perform adaptive
processing in response to determining that the actual number
of distinct values of a distribution key (a common prefix or
one of one or more extended keys) comprising a minimal
number of columns is sufficient to support a desired degree of
parallelism. If none of the combinations of partition-by keys
including any common fix has a sufficient number of distinct
values, a computation-pushdown execution plan as shown in
FIG. 2C can be used.

FIG. 2D illustrates example adaptive parallel execution in
runtime, according to an embodiment. In the runtime, a plu-
rality of parallel executing processes may be used to execute
a plurality of producer operators such as window-sort-and-
TSC operators 208.

Adaptive parallel execution is based on real-time data
analysis of the input source, for example, table scans of the
“sales” table in database table 152 as performed in runtime.
Thus, the adaptive parallel execution is able to optimize using
the actual data records read during runtime rather than relying
on outdated static data at the execution plan generation time,
as in the estimation approach described above with FIG. 1B.

Query optimizer 126 may generate, before runtime, an
execution plan 128 for the database statement in expression
(1) based on incorrect estimation of distinct values of parti-
tion-by keys of the reporting window functions. At runtime,
each of window-sort-and-TSC operators 208-1 through
208-4 monitors (e.g., scans monitor) respective numbers of
distinct values of all combinations of partition-by keys (in the
present example: year; year and quarter; year, quarter and
month), and discovers, from actual data block reading, that
one or more combinations of partition-by keys each have
sufficient number of distinct values. Such monitoring may be
optionally performed on sorted input data in a shared sort
order.

Each such window-sort-and-TSC operator notifies a query
coordinator that a specific combination of partition-by keys or
none of the combinations has a sufficient number of distinct

US 9,390,129 B2

25

values as well as the smallest number of columns. The query
coordinator collects a plurality of these specific combinations
from all the window-sort-and-TSC operators and selects a
new (global) distribution key among the specific combina-
tions respectively received from the window-sort-and-TSC
operators. In some embodiments, the data new distribution
key may be a combination that has the largest number of
columns among all the specific combinations received from
the window-sort-and-TSC operators. In some embodiments,
the new data distribution key may be a combination that has
been specified by the largest number of the window-sort-and-
TSC operators. In some embodiments, if at least one window-
sort-and-TSC operators fails to find a specific combination of
partition-by keys to have a sufficient number of distinct val-
ues, a computation-pushdown execution strategy will be used
by all the parallel executing processes evaluating the report-
ing window functions. In some embodiments, if at least one
window-sort-and-TSC operators fails to find a specific com-
bination of partition-by keys to have a sufficient number of
distinct values, an extended key execution strategy or a com-
mon prefix execution strategy may still be used if a sufficient
number (e.g., 60+%, 70+%, 80+%, 90+%, etc.) of window-
sort-and-TSC operators support such an execution strategy.
The query coordinator notifies all the window-sort-and-TSC
processes (208-1 through 208-4 of FIG. 2D) and/or window
consolidation operators (206-1 through 206-4 of FIG. 2D)
which execution strategy is to be used. If a common prefix
execution strategy or an extended key execution strategy is
selected, the query coordinator also notifies all the window-
sort-and-TSC processes (208-1 through 208-4 of FIG. 2D)
and/or window consolidation operators (206-1 through 206-4
of FIG. 2D) of the global combination of partition-by keys.
Accordingly, the parallel executing processes collectively
and adaptively switch to the selected execution strategy,
which may be different from the one in the execution plan
generated before runtime.

In an example, if a sufficient number of distinct value for
the common prefix (e.g., the “year” column), the following
dynamic execution strategy based on the common prefix as a
(e.g., new) data distribution key may be used to evaluate the
reporting window functions. Under the strategy, window-
sort-and-TSC operators (208-1 through 208-4) of FIG. 2D
become pass-through nodes and simply redistribute input
data based on a distribution function (e.g., hash (year)) to the
window consolidation operators (206-1 through 206-4). The
window consolidation operators (206-1 through 206-4) com-
pute all three window functions directly.

In another example, if a sufficient number of distinct values
is not found for either the “year” column only or a combina-
tion of the “year” and “quarter” columns, but if a sufficient
number of distinct values is found for a combination of the
“year”, “quarter” and “month” columns, the following
dynamic execution strategy based on the combination of the
“year”, “quarter” and “month” columns as a (e.g., new) data
distribution key may be used to evaluate the reporting window
functions. Under this execution strategy, window-sort-and-
TSC operators (208-1 through 208-4) first compute, based on
their respective subsets of input data, partial evaluation (e.g.,
sum(sale)) of the reporting window functions (e.g., the
“yearly-sales” and “quarterly-sales” reporting window func-
tions) that have partition-by columns fewer than the columns
(“year”, “quarter” and “month”) in the data distribution key.
Results of partial evaluations of the reporting window func-
tions (e.g., the “yearly-sales” and “quarterly-sales” reporting
window functions) is broadcasted to all the window consoli-
dation operators (206-1 through 206-4). Further, window-
sort-and-TSC operators (208-1 through 208-4) of FIG. 2D

10

15

20

25

30

35

40

45

50

55

60

65

26

redistribute their respective subset of input data based on a
distribution function (e.g., hash(year, quarter, month)) to the
window consolidation operators (206-1 through 206-4). The
window consolidation operators (206-1 through 206-4) con-
solidate partial results from the window sort-and-TSC opera-
tors (208-1 through 208-4) for the reporting window func-
tions (e.g., the “yearly-sales” and “quarterly-sales” reporting
window functions) which have been evaluated by the window
sort-and-TSC operators (208-1 through 208-4). The consoli-
dated results of these reporting window functions (e.g., the
“yearly-sales” and “quarterly-sales” reporting window func-
tions) may be kept in a lookup table (e.g., hash table) with
distinct values of their respective combinations of partition-
by columns (the “year” column only; and the combination of
the “year” and “quarterly” columns, respectively). The win-
dow consolidation operators (206-1 through 206-4) compute
any remaining window functions (e.g., the “monthly-sales”
reporting window function) that have not been partially
evaluated by the window sort-and-TSC operators (208-1
through 208-4) directly and store the evaluation results of
remaining window functions (e.g., the “monthly-sales”
reporting window function) with (e.g., expanded columns for
“yearly-sales” and “quarterly-sales”) input rows. Based on
values of partition-by columns (the “year” column only; and
the combination of the “year” and “quarterly” columns,
respectively) as determined from an input row, consolidated
results of the reporting window functions (e.g., the “yearly-
sales” and “quarterly-sales” reporting window functions) in
the lookup table can be retrieved and added into (e.g.,
expanded columns for “yearly-sales” and “quarterly-sales™)
the input row.

It should be noted that one or more aspects of the dynamic
execution strategies as discussed above may be implemented
in execution plans generated at compile time before runtime
in some embodiments. For example, instead of randomly
distributing input rows as illustrated in FIG. 2B or FIG. 2C,
hash functions as illustrated in FIG. 2D may be used in an
extended-data-distribution-key execution plan or a computa-
tion-pushdown execution plan generated at compile time
before runtime. In addition, instead of performing initial
evaluations of all reporting window functions by window sort
operators as illustrated in FIG. 2B, (1) partially evaluating
only reporting window functions of partition-by columns
fewer than columns in a data distribution key by window sort
operators and (2) consolidating partial evaluation results from
the window sort operators and computing any remaining
reporting window functions by window consolidation opera-
tors may be used in an extended-data-distribution-key execu-
tion plan or a computation-pushdown execution plan gener-
ated at compile time before runtime.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing

US 9,390,129 B2

27

devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 3 is a block diagram that illustrates a
computer system 300 upon which an embodiment of the
invention may be implemented. Computer system 300
includes a bus 302 or other communication mechanism for
communicating information, and a hardware processor 304
coupled with bus 302 for processing information. Hardware
processor 304 may be, for example, a general purpose micro-
processor.

Computer system 300 also includes a main memory 306,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 302 for storing information and
instructions to be executed by processor 304. Main memory
306 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 304. Such instructions, when stored
in non-transitory storage media accessible to processor 304,
render computer system 300 into a special-purpose machine
that is customized to perform the operations specified in the
instructions.

Computer system 300 further includes a read only memory
(ROM) 308 or other static storage device coupled to bus 302
for storing static information and instructions for processor
304. A storage device 310, such as a magnetic disk, optical
disk, or solid-state drive is provided and coupled to bus 302
for storing information and instructions.

Computer system 300 may be coupled via bus 302 to a
display 312, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 314, includ-
ing alphanumeric and other keys, is coupled to bus 302 for
communicating information and command selections to pro-
cessor 304. Another type of user input device is cursor control
316, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 304 and for controlling cursor movement
ondisplay 312. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g.,y), that allows the device to specify positions in a plane.

Computer system 300 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 300 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 300 in response to processor
304 executing one or more sequences of one or more instruc-
tions contained in main memory 306. Such instructions may
be read into main memory 306 from another storage medium,
such as storage device 310. Execution of the sequences of
instructions contained in main memory 306 causes processor
304 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such storage
media may comprise non-volatile media and/or volatile
media. Non-volatile media includes, for example, optical
disks, magnetic disks, or solid-state drives, such as storage
device 310. Volatile media includes dynamic memory, such as
main memory 306. Common forms of storage media include,
for example, a floppy disk, a flexible disk, hard disk, solid-
state drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage medium,

10

15

20

25

30

35

40

45

50

55

60

65

28
any physical medium with patterns of holes, a RAM, a
PROM, and EPROM, a FLASH-EPROM, NVRAM, any
other memory chip or cartridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
302. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 304
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid-state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 300 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 302. Bus 302 carries the data to main memory 306,
from which processor 304 retrieves and executes the instruc-
tions. The instructions received by main memory 306 may
optionally be stored on storage device 310 either before or
after execution by processor 304.

Computer system 300 also includes a communication
interface 318 coupled to bus 302. Communication interface
318 provides a two-way data communication coupling to a
network link 320 that is connected to a local network 322. For
example, communication interface 318 may be an integrated
services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 318 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 318 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 320 typically provides data communication
through one or more networks to other data devices. For
example, network link 320 may provide a connection through
local network 322 to a host computer 324 or to data equip-
ment operated by an Internet Service Provider (ISP) 326. ISP
326 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 328. Local network 322
and Internet 328 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 320 and
through communication interface 318, which carry the digital
data to and from computer system 300, are example forms of
transmission media.

Computer system 300 can send messages and receive data,
including program code, through the network(s), network
link 320 and communication interface 318. In the Internet
example, a server 330 might transmit a requested code for an
application program through Internet 328, ISP 326, local
network 322 and communication interface 318.

The received code may be executed by processor 304 as it
is received, and/or stored in storage device 310, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific

US 9,390,129 B2

29

details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. The
sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:

1. A method for evaluating reporting window functions, the
method comprising:

receiving a database statement that specifies evaluating a

set of reporting window functions against a set of rows,
wherein each row in the set of rows has values for a
plurality of columns;

wherein each reporting window function in the set of

reporting window functions is specified with a respec-
tive sequence of partition-by keys in a set of sequences
of partition-by keys;

generating a computation-pushdown execution plan for the

database statement, wherein the computation-pushdown

execution plan includes a plurality of producer operators

and a plurality of consolidation operators,

wherein each of the plurality of producer operators pro-
duces in runtime a respective subset of rows in the set
of rows,

wherein each of the plurality of producer operators com-
putes a respective partial aggregation for each report-
ing window function in the set of reporting window
functions based on the respective subset of rows in the
set of rows, and

wherein each of the plurality of producer operators
broadcasts the respective partial aggregation for each
reporting window function in the set of reporting win-
dow functions to the plurality of consolidation opera-
tors;

wherein each consolidation operator of the plurality of
consolidation operators evaluates each reporting win-
dow functions in the set of reporting window func-
tions by fully aggregating all partial aggregations
broadcasted from the plurality of the producer opera-
tors;

wherein the method is performed by one or more comput-

ing devices.

2. The method of claim 1, further comprising:

in response to receiving the database statement, determin-

ing whether there exists a first number of distinct values
(NDV) of a data distribution key within a common prefix
among the set of sequences of partition-by keys such that
the first NDV satisfies one or more criteria associated
with a degree of parallelism (DOP);

in response to determining that there does not exist a first

NDV of a data distribution key within the common pre-
fix among the set of sequences of partition-by keys such
that the first NDV satisfies the one or more criteria asso-
ciated with the DOP, determining whether there exists a
second NDV ofan extended data distribution key among
the sets of sequences of partition-by keys such that the
second NDV satisfies the one or more criteria associated
with the DOP.

3. The method of claim 2, wherein generating a computa-
tion-pushdown execution plan for the database statement is in
response to determining that there does not exist a second
NDV of an extended data distribution key among the sets of
sequences of partition-by keys such that the second NDV
satisfies the one or more criteria associated with the DOP.

10

15

20

25

30

35

40

45

50

55

60

30

4. The method of claim 1,

wherein the computation-pushdown execution plan is gen-
erated before runtime based at least in part on database
statistics relating to NDVs for partition-by keys in the set
of sequences of partition-by keys;

wherein the method further includes:

the plurality of producer operators monitoring a first
NDV of a data distribution key within a common
prefix among the set of sequences of partition-by keys
to determine in the runtime whether the first NDV
satisfies one or more criteria associated with a DOP;
and

in response to determining in the runtime that the first
NDV satisfies the one or more criteria associated with
the DOP, the plurality of producer operators and a
plurality of consumer operators stop executing the
computation-pushdown execution plan and adap-
tively execute a common-prefix execution plan in
which the plurality of producer operators neither per-
forms nor broadcasts respective partial aggregations
for the set of reporting window functions and in which
the plurality of consolidator operators directly per-
forms full aggregations for the set of reporting win-
dow functions.

5. The method of claim 1, further including said each of the
plurality of producer operators arranging the respective sub-
set of rows in a sort order shared by all reporting window
functions in the set of reporting window functions.

6. A method for evaluating reporting window functions, the
method comprising:

receiving a database statement that specifies evaluating a

set of reporting window functions against a set of rows,
wherein each row in the set of rows has values for a
plurality of columns;

wherein each reporting window function in the set of

reporting window functions is specified with a sequence
of partition-by keys in a set of sequences of partition-by
keys;

generating an extended-data-distribution-key execution

plan for the database statement,

wherein the extended-data-distribution-key execution
plan includes a plurality of producer operators, a plu-
rality of sort operators, and a plurality of consolidator
operators,

wherein each sort operator of the plurality of sort opera-
tors is configured to process a respective subset of
rows in the set of rows, wherein each row in the
respective subset of rows has one of one or more
distinct key value combinations of a specific sequence
of partition-by keys, and wherein a specific reporting
window function is specified with the specific
sequence of partition-by keys;

wherein each sort operator of the plurality of sort opera-
tors receives, from the plurality of producer operators,
rows that form the respective subset of rows,

wherein each of the plurality of sort operators computes
arespective partial aggregation for at least one report-
ing window function in the set of reporting window
functions based on the respective subset of rows, and
wherein each of the plurality of sort operators broad-
casts the respective partial aggregation for said at least
one reporting window function in the set of reporting
window functions to the plurality of consolidator
operators, and

wherein each consolidation operator of the plurality of
consolidation operators evaluates said at least one
reporting window function in the set of reporting win-

US 9,390,129 B2

31

dow functions by fully aggregating all partial aggre-
gations broadcasted from the plurality of the sort
operators;

wherein the method is performed by one or more comput-

ing devices.

7. The method of claim 6, further comprising:

in response to receiving the database statement, determin-

ing whether there exists a first number of distinct values
(NDV) of a data distribution key within a common prefix
among the set of sequences of partition-by keys such that
the first NDV satisfies one or more criteria associated
with a degree of parallelism (DOP);

in response to determining that there does not exist a first

NDV of a data distribution key within the common pre-
fix among the set of sequences of partition-by keys such
that the first NDV satisfies the one or more criteria asso-
ciated with the DOP, determining whether there exists a
second NDV ofan extended data distribution key among
the sets of sequences of partition-by keys such that the
second NDV satisfies the one or more criteria associated
with the DOP.

8. The method of claim 7, wherein generating an extended-
data-distribution-key execution plan for the database state-
ment is in response to determining that there exists a second
NDV of an extended data distribution key among the sets of
partition-by keys such that the second NDV satisfies the one
or more criteria associated with the DOP.

9. The method of claim 6,

wherein the extended-data-distribution-key execution plan

is generated before runtime based at least in part on
database statistics relating to NDV's for partition-by keys
in the set of sequences of partition-by keys;

wherein the method further includes:

the plurality of producer operators monitoring a first
NDV of a data distribution key within a common
prefix among the set of sequences of partition-by keys
to determine in the runtime whether the first NDV
satisfies one or more criteria associated with a DOP;
and

in response to determining in the runtime that the first
NDV satisfies the one or more criteria associated with
the DOP, the plurality of producer operators, the plu-
rality of sort operators and a plurality of consumer
operators stopping execution of the extended-data-
distribution-key execution plan and adaptively
executing a common-prefix execution plan in which
the plurality of sort operators neither performs nor
broadcasts respective partial aggregations for the set
of reporting window functions and in which the plu-
rality of consolidator operators directly performs full
aggregations for the set of reporting window func-
tions.

10. The method of claim 6, further including each of the
plurality of sort operators arranging the respective subset of
rows in a sort order shared by all reporting window functions
in the set of reporting window functions.

11. One or more non-transitory computer-readable media
storing sequences of instructions which, when executed by
one Or More processors, cause:

receiving a database statement that specifies evaluating a

set of reporting window functions against a set of rows,
wherein each row in the set of rows has values for a
plurality of columns;

wherein each reporting window function in the set of

reporting window functions is specified with a respec-
tive sequence of partition-by keys in a set of sequences
of partition-by keys;

25

30

35

40

45

60

65

32

generating a computation-pushdown execution plan for the

database statement,

wherein the computation-pushdown execution plan
includes a plurality of producer operators and a plu-
rality of consolidation operators,

wherein each of the plurality of producer operators pro-
duces in runtime a respective subset of rows in the set
of rows,

wherein each of the plurality of producer operators com-
putes a respective partial aggregation for each report-
ing window function in the set of reporting window
functions based on the respective subset of rows in the
set of rows, and

wherein each of the plurality of producer operators
broadcasts the respective partial aggregation for each
reporting window function in the set of reporting win-
dow functions to the plurality of consolidation opera-
tors;

wherein each consolidation operator of the plurality of
consolidation operators evaluates each reporting win-
dow functions in the set of reporting window func-
tions by fully aggregating all partial aggregations
broadcasted from the plurality of the producer opera-
tors.

12. The one or more non-transitory computer-readable
media of claim 11, the sequences of instructions further
including instructions, that when executed by said one or
more processors, cause:

in response to receiving the database statement, determin-

ing whether there exists a first number of distinct values
(NDV) of a data distribution key within a common prefix
among the set of sequences of partition-by keys such that
the first NDV satisfies one or more criteria associated
with a degree of parallelism (DOP);

in response to determining that there does not exist a first

NDV of a data distribution key within the common pre-
fix among the set of sequences of partition-by keys such
that the first NDV satisfies the one or more criteria asso-
ciated with the DOP, determining whether there exists a
second NDV of an extended data distribution key among
the sets of sequences of partition-by keys such that the
second NDV satisfies the one or more criteria associated
with the DOP.

13. The one or more non-transitory computer-readable
media of claim 12, the sequences of instructions further
including instructions, that when executed by said one or
more processors, cause generating a computation-pushdown
execution plan for the database statement is in response to
determining that there does not exist a second NDV of an
extended data distribution key among the sets of sequences of
partition-by keys such that the second NDV satisfies the one
or more criteria associated with the DOP.

14. The one or more non-transitory computer-readable
media of claim 11, the sequences of instructions further
including instructions, that when executed by said one or
more processors, cause:

wherein the computation-pushdown execution plan is gen-

erated before runtime based at least in part on database
statistics relating to NDVs for partition-by keys in the set
of sequences of partition-by keys;

wherein the method further includes:

the plurality of producer operators monitoring a first
NDV of a data distribution key within a common
prefix among the set of sequences of partition-by keys
to determine in the runtime whether the first NDV
satisfies one or more criteria associated with a DOP;
and

US 9,390,129 B2

33

in response to determining in the runtime that the first NDV
satisfies the one or more criteria associated with the
DOP, the plurality of producer operators and a plurality
of consumer operators stop executing the computation-
pushdown execution plan and adaptively execute a com-
mon-prefix execution plan in which the plurality of pro-
ducer operators neither performs nor broadcasts
respective partial aggregations for the set of reporting
window functions and in which the plurality of consoli-
dator operators directly performs full aggregations for
the set of reporting window functions.

15. The one or more non-transitory computer-readable
media of claim 11, the sequences of instructions further
including instructions, that when executed by said one or
more processors, cause said each of the plurality of producer
operators arranging the respective subset of rows in a sort
order shared by all reporting window functions in the set of
reporting window functions.

16. One or more non-transitory computer-readable media
storing sequences of instructions which, when executed by
one or more processors, cause performance of:

receiving a database statement that specifies evaluating a

set of reporting window functions against a set of rows,
wherein each row in the set of rows has values for a
plurality of columns;

wherein each reporting window function in the set of

reporting window functions is specified with a sequence
of partition-by keys in a set of sequences of partition-by
keys;

generating an extended-data-distribution-key execution

plan for the database statement, wherein the extended-

data-distribution-key execution plan includes a plurality

of'producer operators, a plurality of sort operators, and a

plurality of consolidator operators,

wherein each sort operator of the plurality of sort opera-
tors is configured to process a respective subset of
rows in the set of rows, wherein each row in the
respective subset of rows has one of one or more
distinct key value combinations of a specific sequence
of partition-by keys, and wherein a specific reporting
window function is specified with the specific
sequence of partition-by keys;

wherein each sort operator of the plurality of sort opera-
tors receives, from the plurality of producer operators,
rows that form the respective subset of rows,

wherein each of the plurality of sort operators computes
a respective partial aggregation for at least one report-
ing window function in the set of reporting window
functions based on the respective subset of rows, and
wherein each of the plurality of sort operators broad-
casts the respective partial aggregation for said at least
one reporting window function in the set of reporting
window functions to the plurality of consolidator
operators, and

wherein each consolidation operator of the plurality of
consolidation operators evaluates said at least one
reporting window function in the set of reporting win-
dow functions by fully aggregating all partial aggre-
gations broadcasted from the plurality of the sort
operators.

15

20

25

35

40

45

50

55

60

34

17. The one or more non-transitory computer-readable
media of claim 16, the sequences of instructions further
including instructions, that when executed by said one or
more processors, cause:

in response to receiving the database statement, determin-

ing whether there exists a first number of distinct values
(NDV) of a data distribution key within a common prefix
among the set of sequences of partition-by keys such that
the first NDV satisfies one or more criteria associated
with a degree of parallelism (DOP);

in response to determining that there does not exist a first

NDV of a data distribution key within the common pre-
fix among the set of sequences of partition-by keys such
that the first NDV satisfies the one or more criteria asso-
ciated with the DOP, determining whether there exists a
second NDV of an extended data distribution key among
the sets of sequences of partition-by keys such that the
second NDV satisfies the one or more criteria associated
with the DOP.

18. The one or more non-transitory computer-readable
media of claim 17, the sequences of instructions further
including instructions, that when executed by said one or
more processors, cause generating an extended-data-distribu-
tion-key execution plan for the database statement is in
response to determining that there exists a second NDV of an
extended data distribution key among the sets of partition-by
keys such that the second NDV satisfies the one or more
criteria associated with the DOP.

19. The one or more non-transitory computer-readable
media of claim 16,

wherein the extended-data-distribution-key execution plan

is generated before runtime based at least in part on
database statistics relating to NDV's for partition-by keys
in the set of sequences of partition-by keys;

wherein the sequences of instructions further including

instructions, that when executed by said one or more
processors, cause:

the plurality of producer operators monitoring a first NDV

of a data distribution key within a common prefix among
the set of sequences of partition-by keys to determine in
the runtime whether the first NDV satisfies one or more
criteria associated with a DOP; and

inresponse to determining in the runtime that the first NDV

satisfies the one or more criteria associated with the
DOP, the plurality of producer operators, the plurality of
sort operators and a plurality of consumer operators
stopping execution of the extended-data-distribution-
key execution plan and adaptively executing a common-
prefix execution plan in which the plurality of sort opera-
tors neither performs nor broadcasts respective partial
aggregations for the set of reporting window functions
and in which the plurality of consolidator operators
directly performs full aggregations for the set of report-
ing window functions.

20. The one or more non-transitory computer-readable
media of claim 16, the sequences of instructions further
including instructions, that when executed by said one or
more processors, cause for each of the plurality of sort opera-
tors arranging the respective subset of rows in a sort order
shared by all reporting window functions in the set of report-
ing window functions.

#* #* #* #* #*

